Numerical simulation of drop coalescence in the presence of film soluble surfactant
نویسنده
چکیده
Numerical method is presented for simulation of the deformation, drainage and rupture of axisymmetrical film (gap) between colliding drops in the presence of film soluble surfactants under the influence of van der Waals forces at small capillary and Reynolds numbers and small surfactant concentrations. The mathematical model is based on the lubrication equations in the gap between drops and the creeping flow approximation of Navier-Stokes equations in the drops, coupled with velocity and stress boundary conditions at the interfaces. A non-uniform surfactant concentration on the interfaces, related with that in the film, leads to a gradient of the interfacial tension which in turn leads to additional tangential stress on the interfaces (Marangoni effects). Both film and interface surfactant concentrations, related via adsorption isotherm, are governed by a convection-diffusion equation. The numerical method consists of: Boundary integral method for the flow in the drops; Finite difference method for the flow in the gap, the position of the interfaces and the surfactant concentration on the interfaces, as well as in the film. Second order approximation of the spatial terms on adaptive non-uniform mesh is constructed in combination with Euler explicit scheme for the time discretization. For the convection-diffusion equation in the film first order implicit and Crank-Nicolson time integration schemes are used as well. Tests and comparisons are performed to show the accuracy and stability of the presented numerical method.
منابع مشابه
Suggestion of New Correlations for Drop/Interface Coalescence Phenomena in the Absence and Presence of Single Surfactant
After designing and constructing a coalescence cell, drop/interface coalescence phenomenon was studied in the absence and presence of single surfactant.Two surface active agents of sodium dodecyl sulfate and 1-decanol were used. Distilled water was used as dispersed phase. Toluene, n-heptane and aqueous 60% (v/v) of glycerol were selected as continuous phases, separately. It was found that ...
متن کاملThe Influence of Bicomponent Mixed Surfactants on Drop/Interface Coalescence
Effects of binary mixtures of ionic/nonionic (sodium dodecyl sulfate/2-heptanol or 1-decanol) and nonionic/nonionic surfactants (2-heptnol/1-decanol) on drop/interface coalescence of water drops in a continuous n-heptane phase were examined. The drop size reduced appreciably and the multi-step coalescence was suppressed finally as the concentration of each of the constituting components</em...
متن کاملررسی اثر مخلوط مواد فعال سطحی روی پدیده پیوند قطره
In this research, effect of bicomponent mixed surfactant was studied on drop interface coalescence phenomenon in ambient temperature. First basic chemical system was water and toluene and 0.01 gr of sodium dodecyle sulfate (SDS) and the second basic system was water and toluene and 0.01 gr of cethyl trimethy amonium bromide (CTAB). Various weight fractions of second surfactant including 2-hepta...
متن کاملNumerical Simulation of Drop Coalescence in the Presence of Inter-Phase Mass Transfer
Contents Introduction: Drop coalescence and applications; Effect of inter-phase mass transfer. • Inter-phase transport of solutes-convection-diffusion equations in the phases. Numerical method: • Boundary Integral Method for the Stokes equations in the drops; • Finite Difference Method for the flow in the film and the convection-diffusion equations.
متن کاملAccounting for Surface Concentrations Using a VOF Front Tracking Method in Multiphase Flow
In this dissertation, we present a numerical method for tracking surfactants on an interface in multiphase flow, along with applications of the method to two physical problems. We also present an extension of our method to track charged droplets. Our method combines a traditional volume of fluid (VOF) method with marker tracking. After describing this method in detail, we present a series of te...
متن کامل